M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

First Semester

Chemistry

INORGANIC CHEMISTRY - I

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct options.

- 1. The shape of the molecule depends on the (CO1, K2)
 - (a) Adjacent atom (b
- (b) Valence electrons
 - (c) Surroundings
- (d) Atmosphere
- 2. Which of the following parameters cannot be estimated by using the Born-haber cycle? (CO1, K2)
 - (a) Lattice energy
 - (b) Hydration energy of the ion
 - (c) Electron gain enthalpy
 - (d) Electronegativity
- 3. CFSE for high spin d⁴ octahedral complex is (CO2, K3)
 - (a) $-1.8\Delta_{\rm o}$
- (b) $-0.6\Delta_{\rm o}$
- (c) $-1.6\Delta_0 + p$
- (d) $-1.2\Delta_0$
- 4. Which is the strongest Jahn-Teller distortion? (CO2, K3)
 - (a) Z-in
- (b) Z-out
- (c) Both (a) and (b)
- (d) None of the above

		O ₂ molecule is	r	,					
		_			(CO3, K4)				
	(a)	Resonance							
	(b)	Hybridisation							
	(c)	Molecular orbi		У					
	(d)	Valence bond t	cheory						
	As a	ligand, Cl ⁻ is			(CO3, K4)				
	(a)	σ – donor							
	(b)	π – donor							
	(c)	Both σ and π	donor						
	(d)	σ donar and	π accept	or					
	In N	VaCl crystal, the	e radius i	ratio is	(CO4, K5)				
	(a)	0.4	(b)	0.98					
	(c)	1.0	(d)	0.52					
	The	The structure of Zinc blende is (CO4, K5)							
	(a)	FCC	(b)	BCC					
	(c)	HCP	(d)	SC					
•	What is the most common oxidation state of lanthanides? (CO5, K6)								
	(a)	+2	(b)	+3					
	(c)	+6	(d)	+4					
0.	Whi	ch property c	of actini	ides cannot	be explained? (CO5, K6)				
	(a)	Radioactive	(b)	Oxidation					
	(c)	Magnetic	(d)	Acidic					
			2		R1798				

Part B

 $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) Explain the shape of $\rm H_2O$ and $\rm CO_2$ molecules. (CO1, K2)

Or

(b) State HSAB principle with example. (CO1, K2)

12. (a) Differentiate VBT and CFT theory. (CO2, K3)

Or

- (b) Discuss about Jahn-Teller distortion. (CO2, K3)
- 13. (a) Write a brief note on the advantages of MoT. (CO3, K4)

Or

- (b) Enumerate the recent advances in theories of Co-ordination Complexes. (CO3, K4)
- 14. (a) Predict the crystal structures of NaCl and CsCl. (CO4, K5)

Or

- (b) Point the differences between graphite and diamond. (CO4, K5)
- 15. (a) Comment on the position of f-block elements. (CO5, K6)

Or

(b) Elaborate the spectral properties of actinides. (CO5, K6)

R1798

Answer all the questions not more than 1000 words each.

16. (a) Discuss the concept of hybridization of inorganic molecules. (CO1, K2)

Or

- (b) Write the steps involved in Born-Haber Cycle. (CO1, K2)
- 17. (a) Elucidate the salient features of CFT. (CO2, K3)

Or

- (b) Describe the d-d splitting in tetrahedral and octahedral complexes. (CO2, K3)
- 18. (a) State and explain extended Huckel theory.(CO3, K4)

Or

- (b) Give a detailed note on bonding in co-ordination complexes. (CO3, K4)
- 19. (a) Justify how ions are packed in HCP, FCC and BCC Crystals. (CO4, K5)

Or

- (b) Comment on the structure of AB_2 and A_2B type of crystals. (CO4, K5)
- 20. (a) Validate the applications of lanthanide compounds. (CO5, K6)

Or

(b) Comment on the magnetic properties of lanthanides and actinides. (CO5, K6)

R1798

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

First Semester

Chemistry

ORGANIC CHEMISTRY — I

(CBCS - 2022 onwards)

Time: 3 Hours		Maximum : 75 Marks
Pa	rt A	$(10 \times 1 = 10)$
Answer all the following ob	iective ty	me questions by choosing

Answer **all** the following objective type questions by choosing the correct option.

- 1. When an atom withdrawn electronic cloud towards itself through σ bond, it is referred to possess (CO1, K2)
 - (a) No bond resonance
 - (b) Inductive effect (-I)
 - (c) Inductive effect (+I)
 - (d) Resonance effect
- 2. According to Huckle's rule the aromatic cyclopropenyl cation should have 'n' value = ______. (CO1, K3)
 - (a) 0

(b) 1

(c) 2

- (d) 3
- 3. In case of thermodynamically controlled reactions, the product formation depends on of the products. (CO2, K3)
 - (a) Relative stability (b) Rate of reaction
 - (c) Solid nature
- (d) Mass

4.	hnor			exhibit the s	_			
	step	aking to formation	n or be	onas in the rat	(CO2, K1)			
	(a)	Taft equation			, , ,			
	(b)	-	ion					
	(c)	LFER						
	(d)		ılate					
	(u)	Trammona poste	nave					
5.	In]	E ₁ CB mechanism	, the	β -carbon is $-$	to			
	give	give its conjugate base of the substrate. (CO3, K4)						
	(a)	Hydrolysed						
	(b)	Protonated						
	(c)	Deprotonated						
	(d)	Alkylated						
6.		——— stated t	hat the	e double bonds	in the bridged			
		head positions are unstable. (CO3, K2)						
	(a)	Zaitsev's rule	(b)	NGP				
	(c)	Ziegler	(d)	Bredt's rule				
7.	Chi	rality means ——		_ .	(CO4, K2)			
	(a)	No elements of s	symme	try				
	(b)	No alternate axi	is of lllt	cry				
	(c)	No plane of sym	metry					
	(d)	No centre of syn	nmetry					
			2		R1799			

8. The correct Fischer projection formula glyceraldehyde is ————. (CO4, K4)

- 9. The anomeric effect in carbohydrates, assist the orientation of hydroxyl group in ————. (CO5, K3)
 - (a) Equatorial rather than axial
 - (b) Axial rather than equatorial
 - (c) Equatorial
 - (d) None
- 10. Trans annular strain is also known as ———. (CO5, K1)
 - (a) Prelog's strain (b) Bayer's strain
 - $\hbox{ (c)} \quad \hbox{Torsional strain } \quad \hbox{ (d)} \quad \hbox{Bond angle strain} \\$

R1799

Part B

 $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) In the 'H NMR spectrum, explain the significance of protons resonating in the region of 6.5-8.0,ppm. (CO1, K4)

Or

- (b) Differentiate electromeric effect from inductive effect. (CO1, K2)
- 12. (a) Analyse and illustrate Lewis concepts of acids and bases. (CO2, K3)

Or

- (b) Write a short note on non-kinetic methods of determining reaction mechanism. (CO2, K2)
- 13. (a) Compare S_E1 and S_E2 mechanisms. (CO3, K4)

Or

- (b) Demonstrate Benzyne mechanism. (CO3, K2)
- 14. (a) Compare and contrast the concepts of configuration and conformation with suitable examples. (CO4, K4)

Or

- (b) Sketch the structure of D & L threose and assign R/S to every chiral centre in them. (CO4, K3)
- 15. (a) Illustrate First Plattner rule. (CO5, K2)

Or

(b) Choose the most stable conformer for 1,2-dimethyl ethane and compare its stability with its other conformers. (CO5, K4)

R1799

Part C

 $(5 \times 8 = 40)$

(b) Analyze the configuration of the following: (CO4, K4)

(i)
$$Br$$
 H CH_2OH (2)

(iv)
$$H = C = C \longrightarrow H$$
 (2)

20. (a) Analyze the various conformations of cyclohexane (unsubstituted) in terms of their stabilities and energies. (CO5, K4)

Or

(b) Suggest suitable hydroxylation reactions to differentiate woodward and prevost reactions. (CO5, K2)

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

First Semester

Chemistry

PHYSICAL CHEMISTRY — I

(CBCS - 2022 onwards)

Answer **all** the following objective type questions by choosing the correct option.

1. Wave function ψ of a particle is (CO1, K2)

- (a) Real quantity
- (b) A complex quantity
- (c) An imaginary quantity
- (d) None
- 2. The probabity density of a particle is (CO1, K2)
 - (a) Negative
- (b) Negative or positive
- (c) Always positive
- (d) Complex quantity
- 3. The number of elements in a group is called its (CO2, K3)
 - (a) Degree
- (b) Order
- (c) Power
- (d) None
- 4. Which one is belongs to C_2V group. (CO2, K3)
 - (a) NH_3
- (b) H_2O
- (c) CH₄
- (d) CO

5.		en the temperature etion	rate of the (CO3, K2)		
	(a)	No change	(b)	Doubles	
	(c)	Decreases	(d)	Ten times	
6.	Alte	ering of rate due to 1	non re	eacting ionic specie	es is (CO3, K2)
	(a)	Primary salt effec	et (b)	Secondary salt ef	ffect
	(c)	Catalysis	(d)	Ionic reaction	
7.	The	ideal gas equation	for 1	mole of gas is	(CO4, K2)
	(a)	$P_1V_1 = P_2V_2$	(b)	$\frac{P_1}{P_2} = \frac{\pi}{T_2}$	
	(c)	$P_V = nRT$	(d)	$P_V = RT$	
8.	Whi	ich is absolute temp	eratu	ıre	(CO4, K2)
	(a)	$-272^{\circ}\mathrm{C}$	(b)	$-273.15^{\circ}{\rm C}$	
	(c)	$0^{\circ}\mathrm{C}$	(d)	100°C	
9.	Whi	(CO5, K5)			
	(a)	Phosphorosence			
	(b)	Fluoresence			
	(c)	Internal conversion	on		
	(d)	All of the above			
10.	Whi	ich molecule is mair	ed to collect solar	light. (CO5, K5)	
	(a)	CeO_2	(b)	${ m TiO}_2$	
	(c)	ZnO	(d)	NiO	
			2		R1800

Part B $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) State the basic principles of Quantum mechanics. (CO1, K2)

Or

(b) Explain Bohr model. (CO1, K2)

12. (a) Write short notes on various symmetry operations. (CO2, K3)

Or

- (b) Write great orthogonality theorem. (CO2, K3)
- 13. (a) Explain kinetic isotopic effect. (CO3, K2)

Or

- (b) Differentiate primary and secondary salt effect. (CO3, K2)
- 14. (a) Construct Carnot principle with example. (CO4, K2)

Or

- (b) What is Fermi energy? Explain its significance. (CO4, K2)
- 15. (a) Differentiate fluoresence and phosphorosence. (CO5, K5)

Or

(b) Construct a dye senstised solar cell. Enumerate its uses. (CO5, K5)

R1800

Part C

 $(5 \times 8 = 40)$

Answer **all** the following questions not more than 1000 words each.

16. (a) Derive schordinger wave equation. Why it is an eigen equation. (CO1, K2)

Or

(b) Explain

(CO1, K2)

- (i) Photoelectric effect
- (ii) Wave particle duality
- 17. (a) Construct the character table for C₂V point group. (CO₂, K₃)

Or

- (b) Discuss various symmetry elements. (CO2, K3)
- 18. (a) Derive Nernst Einstein equation. (CO3, K2)

Or

- (b) Discuss activated complex theory. (CO3, K2)
- 19. (a) Derive Maxwell relations. (CO4, K2)

Or

- (b) Explain free electron model for solids. (CO4, K2)
- 20. (a) Draw and explain Jablonski diagram. (CO5, K5)

Or

(b) Discuss Marcus theory for electron transfer reactions. (CO5, K5)

R1800

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

First Semester

Chemistry

Elective — INSTRUMENTAL METHODS OF ANALYSIS

(CBCS - 2022 onwards)

Time : 3 Hours Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the questions by choosing the correct option.

- 1. Paper Chromatography is a separatory technique that is used to separate (CO1, K1)
 - (a) Simple mixtures (b) Complex mixtures
 - (c) Viscous mixtures (d) Metals
- 2. Which of the following is used to pack columns in adsorption chromatography? (CO1, K1)
 - (a) Carbon
 - (b) Silica gel
 - (c) Potassium hydroxide
 - (d) Aluminium oxide
- 3. In an experiment, it is found that the experimental value is very close to actual value, hence the experimental value can be called ————. (CO2, K2)
 - (a) Accurate
- (b) Precise
- (c) Suitable
- (d) Mean

	t in scientific (CO2, K2)			
(a)	2	(b)	3	
(c)	4	(d)	5	
	-	_		
(a)	Yellow	(b)	Violet	
(c)	Green	(d)	White	
Aton	nic spectra is also k	nown	as	(CO3, K2)
(a)	Continuous spectr	a		
(b)	Line spectra			
(c)	Spectra of absorpt	ion		
(d)	The emission spec	trum		
Wha	t are the two main	techn	iques for therma	al analysis? (CO4, K2)
(a)	FTG AND DGG	(b)	MSP AND FCT	ı
(c)	TGA AND DTA	(d)	TSA AND DGF	
			alysis, the res	ult obtained (CO4, K1)
(a)	Continuous chart			
(b)	Continuous parab	ola		
(c)	Continuous circula	ar pos	sitions	
(d)	Discontinuous cha	.rt		
A po	tentiometer does no	ot		(CO5, K2)
(a)	Measure the Emf	of two	o cells	
(b)	Measure the unkn	own	temperature	
(c)	Measure the cell I	ntern	al Resistance	
(d)	Compare the emf	of two	cells	
		2		R1801
	(a) (c) The obtain (a) (c) Atom (a) (b) (c) (d) What (a) (c) (d) A pool (a) (b) (c) (d)	measurements? (a) 2 (c) 4 The potassium salts a obtain the line spectrum (a) Yellow (c) Green Atomic spectra is also k (a) Continuous spectr (b) Line spectra (c) Spectra of absorpt (d) The emission spectr What are the two main (a) FTG AND DGG (c) TGA AND DTA In thermo gravimetric appear as a (a) Continuous chart (b) Continuous chart (c) Continuous circulated appear as a A potentiometer does not appear as a (a) Measure the Emf (b) Measure the cell Interpretation of the continuous chart (c) Measure the cell Interpretation of the cell In	measurements? (a) 2 (b) (c) 4 (d) The potassium salts are plobtain the line spectrum, the line spectrum, the line spectrum, the line spectrum, the line spectra is also known (a) Continuous spectra (b) Line spectra (c) Spectra of absorption (d) The emission spectrum line what are the two main technical line spectra (a) FTG AND DGG (b) (b) TGA AND DTA (d) In thermo gravimetric an appear as a (a) Continuous chart (b) Continuous chart (c) Continuous circular position (d) Discontinuous chart A potentiometer does not (a) Measure the Emf of two (b) Measure the cell Internation (d) Compare the emf of two (d) Com	(a) 2 (b) 3 (c) 4 (d) 5 The potassium salts are placed in a Bunsobtain the line spectrum, the colour of the light obtain the line spectrum, the colour of the light (a) Yellow (b) Violet (c) Green (d) White Atomic spectra is also known as (a) Continuous spectra (b) Line spectra (c) Spectra of absorption (d) The emission spectrum What are the two main techniques for thermal (a) FTG AND DGG (b) MSP AND FCT (c) TGA AND DTA (d) TSA AND DGF In thermo gravimetric analysis, the resumpear as a ————————————————————————————————

10.	Bios	ensors which measures the light output is known as (CO5, K2)				
	(a)	Optical biosensor				
	(b)	Electrochemical biosensor				
(c) Calorimetric biosensor						
	(d)	Piezoetectric biosensor				
		Part B $(5 \times 5 = 25)$				
1	Answe	er all the questions not more than 500 words each.				
11.	(a)	What is Rf value? - Explain it. (CO1, K3)				
		Or				
	(b)	Write short note on Thin layer chromatography. (CO1, K3)				
12.	(a)	Explain the student-t test curves. (CO2, K4)				
		Or				
	(b)	Discuss about Significant figures. (CO2, K3)				
13.	(a)	Explain the Principles and applications of Atomic Absorption Spectrometry (AAS). (CO3, K4)				
		Or				
	(b)	Discuss briefly about the Flame photometry. (CO3, K4)				
14.	(a)	Explain the working principle of TGA. (CO4, K3) Or				
	(b)	Write short notes on Differential Scanning Calorimetry (DSC). (CO4, K4)				
15.	(a)	Discuss the working principle of Cyclic Voltammetry. (CO5, K4)				
		Or				
	(b)	Explain briefly about the Principles of Amperometry. (CO5, K3)				
		3 R1801				

А	nswe	r all the questions not more than 1000 words each.
16.	(a)	Discuss in detail about the High Performance Liquid Chromatography (HPLC). (CO1, K5)
		Or
	(b)	Explain in detail about the Ion Exchange Chromatography. (CO1, K5)
17.	(a)	What is meant by error? Explain the different types errors. (CO2, K5)
		Or
	(b)	Write short note on (CO2, K5)
		(i) Significant figures (4)
		(ii) Correlation co-efficient (4)
18.	(a)	Discuss in detail about the Atomic Fluorescence Spectrometry. (CO3, K5)
		Or
	(b)	What is meant by atomic emission? How the atomic emission spectrometer works?-Explain it. (CO3, K6)
19.	(a)	Discuss the working principle of Transmission Electron Microscopy (TEM) with schematic diagram. (CO4, K5)
		Or
	(b)	Discuss in detail about the X-ray diffraction meter (XRD). (CO4, K5)
20.	(a)	What is sensors? How the Electrochemical sensors working-Explain in detail. (CO5, K5)
		Or
	(b)	Discuss the following (CO5, K5)
		(i) Working principle of Potentiometer (5)
		(ii) Biosensors (3)
		

4

Part C

 $(5 \times 8 = 40)$

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

Third Semester

Chemistry

ADVANCED INORGANIC CHEMISTRY

(CBCS - 2022 onwards)

Answer **all** the following objective type questions by choosing the correct options.

1. What is the spin multiplicity of Fischer carbene?

(CO1, K2)

(a) 3

(b) 2

(c) 1

- (d) 0
- 2. What is the other name for metathesis reaction?

(CO1, K2)

- (a) Addition reaction
- (b) Substitution reaction
- (c) Halogenation reaction
- (d) Double displacement reaction
- 3. Name the catalyst used in Wacker process? (CO2, K4)
 - (a) Pdcl₂/Cucl₂
- (b) MoBr₂/Cucl₂
- (c) Pdcl₂/Crcl₂
- (d) Pocl₂/Cdcl₂

4.		ch is the suitabletion?	le re	eagent for hydroformylation (CO2, K4)				
	(a)	Tungsten	(b)	Palladium				
	(c)	Rhodium	(d)	Molybdenum				
5.		of the following li helauxatic effect?	gand	which has higher position in (CO3, K3)				
	(a)	I^-	(b)	CN^-				
	(c)	Br^-	(d)	en				
6.	Org	el diagram can be a	applie	d only for (CO3, K3)				
	(a)	High spin comple	exes					
	(b)	Low spin complex	xes					
	(c)	Both (a) and (b)						
	(d)	None of the above	e					
7.	How much ATP does sodium – Potassium pump consume? (CO4, K4)							
	(a)	$3/4^{ m th}$	(b)	$1/4^{ m th}$				
	(c)	$1/3^{\rm rd}$	(d)	$1/2^{\mathrm{th}}$				
8.	Photosystem – I has a (CO4, K4)							
	(a)	a) Cholorophyll – a						
	(b)	(b) $M-dihydro porphyrin compelx$						
	(c)	(c) Both (a) and (b)						
	(d)	None of the above	e					
9.	The	ligand system pres	sent i	n Vitamin B-12 is (CO5, K5)				
	(a)	Porphyrin	(b)	Corrin				
	(c)	Phthalocyanine	(d)	Crownether				
			2	R1802				

10.	Whi	ch one of the foll	owing is	s a non-heme prot	tein? (CO5, K5)					
	(a)	Hemoglobin	(b)	Cytochrome P-4	150					
	(c)	Myoglobin	(d)	Hemocyanin						
]	Part B		$(5 \times 5 = 25)$					
1	Answe	er all the question	ns not r	nore than 500 wo	rds each.					
11.	(a)	Write the med metathesis.	hanism	of ring opening	and closing (CO1, K2)					
			Or							
	(b)	Comment on th	ne struct	ture of ferrocene.	(CO1, K2)					
12.	(a)	What is oxidati	ive addi	tion? Give examp	le. (CO2, K4)					
		${ m Or}$								
	(b)	State Ziegler –	Natta p	olymerisation.	(CO2, K4)					
13.	(a)	Derive the term	n symbo	l for d² configura	tion. (CO3, K3)					
			Or							
	(b)	Differentiate P	ara, feri	ro and antiferro n	nagnetism. (CO3, K3)					
14.	(a)	Explain the the	erapeuti	c applications of	cisplatin. (CO4, K4)					
			Or							
	(b)	Comment on tall, Cd and Cr.	the toxi	city of inorganic	metals like (CO4, K4)					
15.	(a)	Draw the struc	ture of l	Haemoglobin.	(CO5, K5)					
		Or								
	(b)	Enumerate the		nvolved in Nitrog	en fixation. (CO5, K5)					
			3		R1802					

Part C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Discuss the reactivity of metal carbene complexes. (CO1, K2)

Or

- (b) State and explain cyclopentadienyl complexes. (CO1, K2)
- 17. (a) Write the mechanism of hydrogenation and hydroformylation. (CO2, K4)

Or

- (b) Write a detailed note on Monsanto Process. (CO2, K4)
- 18. (a) Discuss the electronic spectra of transition metal complexes. (CO3, K3)

Or

- (b) Describe the magnetic susceptibility using SQUID magnetometry. (CO3, K3)
- 19. (a) Summarize the role of trace elements in human life. (CO4, K4)

Or

- (b) Validate how radioisotopes are used in medicine. (CO4, K4)
- 20. (a) Formulate the structure of Zinc based enzyme carboxy peptidase-A. (CO5, K5)

Or

(b) Determine the structure and properties of chlorophyll. (CO5, K5)

R1802

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

Third Semester

Chemistry

ADVANCED ORGANIC CHEMISTRY

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

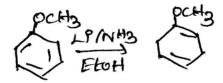
Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

1. The correct combination of reagents A and B to effect following transformations are (CO1, K4)

- (a) $A = cat.OSO_4$, NMO; B = (i) I_2 , $phCO_2Ag$, (ii) aq.NaOH
- (b) A = alkaline KMNO₄; B = (i) I_2 , phCO₂Ag, H_2O , (ii) aq.NaOH
- (c) $A = (i) I_2$, phCO₂Ag, (ii) aq.NaOH; $B = cat\text{-OSO}_4$, TMEDA, NMO
- (d) A = (i) m = cpBA; (ii) aq.NaOH; B = alkaline $KMNO_4$

(a) MnO_2 . CH_2Cl_2

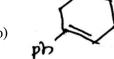

3.

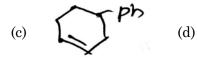
- (b) TEMPO (20%) (Naocl) (1.25eq), CH₂Cl₂
- (c) Pyridinium dichromate, CH₂Cl₂
- (d) Dimethyblioxirane, CH₂Cl₂

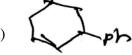
2

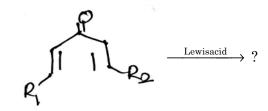
4. Identify the reaction

(CO2, K4)


- (a) Pinacol formation
- (b) Corey-Bakshi-Shibata
- (c) Luche-reduction
- (d) Birch reduction


5. Predict the product

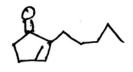

(CO3, K3)



- 6. In Net reaction which group is converted in acidic conditions to product (CO3, K3)
 - (a) Methyl into carbonyl
 - (b) Nitro into carbonyl
 - (c) Nitro into Methyl
 - (d) Chloro into Methyl

R1803

$$\mathbf{H_3C} \equiv \mathbf{CH_3} + \mathbf{CH_2} = \mathbf{CH} - \mathbf{R^1} \xrightarrow{\mathbf{CO_2(CO)_8}} \mathbf{?}$$


R1803

(b)

(c)

(d)

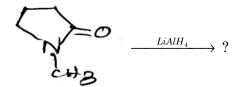
10. Which of following is true?

(CO5, K4)

- (a) Absolute assymetric synthesis is synthesis of optically active product from optically inactive substrate using enantiomer
- (b) Absolute assymetric synthesis is synthesis of optically active product from optically active substrate using diastereomer
- (c) Absolute assymetric synthesis is synthesis of optically active product from optically inactive substrate without using enantiomer
- (d) Absolute assymetric synthesis is synthesis of optically inactive product from optically active substrate using enantiomer

6

Answer all the questions not more than 500 words each.


11. (a) Why trifluoroperacetic acid is an effective reagent compared to peracetic acid for epoxidation of alkens? (CO1, K4)

Or

- (b) Write the mechanism of ozonolysis of an α, β -unsaturated carboxylic acid which proceeds bytheloss of CO_2 . (CO1, K4)
- 12. (a) (i) Explain the mechanism behind reduction of esters to aldehydes with DIBAL-H.
 - (ii) Write the uses of DIBAL-H. (CO2, K4)

Or

(b) Predict the product (CO2, K4)

13. (a) Explain the mechanism of Heck reaction. (CO3, K3)

Or

(b) Write a short note on crownethers in phase transfer catalyst. (CO3, K3)

7

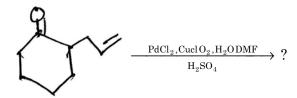
14. (a) Write the mechanism of Bergman cyclization using cydodeca-3-ene-1,5-diyne. (CO4, K4)

Or

- (b) Discuss the construction o/s maceocyclic rings and ring closing metathesis. (CO4, K4)
- 15. (a) Explain synthetic route of jasmone and retinol. (CO5, K4)

Or

(b) Write short note on important strategies of reteosynthesis. (CO5, K4)


Part C
$$(5 \times 8 = 40)$$

Answer all the questions not more than 1000 words each.

16. (a) Predict the products from each of unsymmetrical ketones on Baeyer-villiger reaction. (CO1, K4)

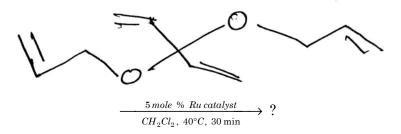
Or

(b) Predict the product and explain the reaction. $(CO1,\,K4)$

8

17. (a) Comment on the reaction outcome

Or

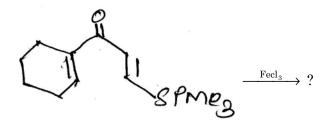

- (b) Convert I-butyne into the is-epoxide (II)-How the same epoxide with transgeometry (III) could be prepared. (CO2, K4)
- 18. (a) Explain the preparation process of cyclohexanone derivatives using Robinson Annulation. (CO3, K3)

Or

(b) Explain the mechanism.

(CO3, K3)

(CO2, K4)



19. (a) Write an essay about Pauson-Knad reaction for synthesis of cyclopentanones. (CO4, K4)

Or

9

(b) Guess the reaction and product write briefly. (CO4, K4)

20. (a) Discuss a brief note on protection and deprotection of alkene, 1, 3-butadiene. (CO5, K4)

Or

(b) Predict the synthetic route of ascorbic acid. (CO5, K4)

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

Third Semester

Chemistry

ADVANCED PHYSICAL CHEMISTRY

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

 $\mathbf{Part}\,\mathbf{A} \qquad (10 \times 1 = 10)$

Answer **all** the following objective type questions by choosing the correct option.

- 1. Slater-type orbitals are particularly useful in which type of calculations? (CO1, K2)
 - (a) Molecular dynamics simulations
 - (b) Quantum chemical calculations
 - (c) Classical mechanics problem
 - (d) Thermodynamic calculations
- 2. According to the Hellmann-Feynman theorem, the force on a nucleus in a module is given by (CO1, K2)
 - (a) The gradient of the potential energy
 - (b) The gradient of the electron density
 - (c) The gradient of the total energy with respect to the position of the nucleus
 - (d) The gradient of the kinetic energy with respect to the position of the nucleus

- 3. Raman scattering is particularly useful for studying. (CO2, K1)

 (a) Nuclear magnetic resonance
 (b) Molecular vibration and chemical composition
 (c) Thermal conductivity
 (d) Electronic band structure
- 4. In the context of the Boltzmann distribution, the term $e\{-E/K_BT\}$ is often referred to as (CO2, K2)
 - (a) The degeneracy factor
 - (b) The energy factor
 - (c) The Boltzmann factor
 - (d) The partition function
- 5. Electro chemistry is the study of (CO5, K1)
 - (a) Chemical reactions involving light
 - (b) Chemical processes involving heat
 - (c) Chemical reactions that produce electrical effects and vice versa
 - (d) Chemical reactions involving sound
- 6. The potential drop in the electric double layer is primarily associated with which part of the double layer structure? (CO3, K2)
 - (a) Only the Helmholtz layer
 - (b) Only the diffuse layer
 - (c) Both the helmholtz layer and the diffuse layer
 - (d) Neither the Helmholtz layer nor the diffuse layer

(b)	The disorder or randomness of a system							
(c)	The workdone by a system							
(d)	The heat capacity of a system							
	M theory is most applicable to which type of tions. (CO4, K2)							
(a)	Bimolecular reactions in the gas phase							
(b)	Line molecular reactions in the gas phase							
(c)	Bimolecular reactions in solution							
(d)	Photo chemical reactions							
	plane does not intersect the x -axis but Intersects the xis at b and the z -axis (CO5, K1)							
(a)	(011) (b) (010)							
(c)	(100) (d) (110)							
The	conductivity of a semiconductor increases with (CO5, K1)							
(a)	Decreasing temperature							
(b)	Increasing temperature							
(c)	Increasing band gap							
(d)	Increasing impurity concentration							
	Part B $(5 \times 5 = 25)$							
Ansv	wer all questions not more than 500 words each.							
(a)	State and prove the Hellman-Feynman theorem. (CO1, K1)							
	Or							
	01							
(b)	Outline the Hartee-Fock SCF theory of polyatomic molecules. (CO1, K4)							
	(d) RRK reac (a) (b) (c) (d) If a y-ax (a) (c) The (a) (b) (c) (d) Answ							

In statistical mechanics, Entropy is a measure of $(\mathrm{CO4},\,\mathrm{K1})$

The total energy of a system

7.

(a)

12.	(a)	Explain the following:	(CO2, K4)
		(i) Fermi's Golden rule	
		(ii) Transition Dipole moment Or	
	(b)	Write short note on Nuclear Quadrupol spectroscopy.	e resonance (CO2, K2)
13.	(a)	Discuss in detail Helmholtz-perrin mode field interface. Or	el of electric (CO3, K4)
	(b)	Write a note on Ion-solvent Interactions.	(CO3, K4)
14.	(a)	Using appropriate diagrams discuss potential energy surfaces in reaction	
		Or	
	(b)	Derive Fermi-Dirac statistics.	(CO4, K4)
15.	(a)	Derive Bragg's equation for the diffraction by crystals?	on of X-rays (CO5, K4)
		Or	
	(b)	What are the difference between isotropic solids.	opic and an (CO5, K2)
		Part C	$(5 \times 8 = 40)$
	Ansv	ver all questions not more than 1000 word	s each.
16.	(a)	Discuss LCAO-MO treatment of Hydroge	en molecule. (CO1, K4)
		Or	
	(b)	Explain the following:	(CO1, K4)
		(i) Spin-Orbit Coupling	(4)
		(ii) Term symbols.	(4)
		4	R1804
		4	N10U4

17.	(a)	(i) Comment on the stark effect in microwave spectra. (2)				
		(ii) How is microwave spectroscopy used in investigating (1) internal rotation and (2) the inversion spectrum of NH_3 ? (6)				
		(CO2, K1)				
		Or				
	(b)	Discuss SRS, Inverse Raman scattering and CARS emphasizing the salient features. (CO2, K4)				
18.	(a)	Write explanatory note on the following: (CO3, K2)				
		(i) Butter-Volmer equation. (4)				
		(ii) Tafel equation and Tafel plot. (4)				
		Or				
	(b)	Discuss the structure of electrified interfaces with reference to the Gouy-Chapman model. (CO3, K2)				
19.	(a)	(i) Give a short account of Maxwell-Botzmann's distribution of energies. (4)				
		(ii) Compare Bose-Einestein, Fermi-Dirac statistics. (4) (CO4, K3)				
		Or				
	(b)	Discuss the Absolute reaction rate theory. Explain how ARRT is superior to collision theory. (8) (CO4, K3)				
		5 R1804				

20. (a) Describe the experimental details of the various methods employed for the study of crystals by means of X-rays. (8)

Or

(b) What are n-type and p-type semi conductors? Explain how their combinations find application in the fabrication of transistors. (CO5, K1)

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2024

Third Semester

Chemistry

Elective: SPECTROSCOPIC METHODS OF ANALYSIS

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. Surface enhanced Raman scattering involves (CO1, K2)
 - (a) Complex
- (b) Nano material
- (c) Catalyst
- (d) Raman activity
- 2. The deep color of the $K_2Cr_2O_7$ is due to (CO1, K2)
 - (a) Conjucation
- (b) Delocalisation
- (c) Charge transfer
- (d) Absorbance
- 3. Which in NMR inactive?

(CO2, K2)

- (a) ^{13}C
- (b) ^{31}P
- (c) ^{19}F
- (d) ^{12}C
- 4. Identify the NMR standard

(CO2, K2)

- (a) TEOS
- (b) TMS
- (c) APS
- (d) All

5.	Sign	Signal splitting in NMR arises from (CO3, K4)				
	(a)	Shielding effect				
	(b)	Spin-spin decoupling				
	(c)	Spin-spin coupling				
	(d)	Deshielding effect	t			
6.	Spin-spin coupling is not observed when the protons are separated by more than (CO3, K4)					
	(a)	One single bond	(b)	Two sigma bond		
	(c)	Three sigma bond	d (d)	Four sigma bond	d	
7.	In mass spectra the peak with highest intensity is					
					(CO4, K4)	
	(a)	Molecular ion peak				
	(b)	Base peak				
	(c)	Fragmented peak				
	(d)	None				
8.	Mos	Mossbauer spectroscopy uses (CO4, K4)				
	(a)	Radio frequency	(b)	Gamma rays		
	(c)	Infra red	(d)	Microwave		
9.	Beers Lambert law associated with (CO5, K3)					
	(a)	IR	(b)	Mass		
	(c)	UV-visible	(d)	NMR		
10.	Scattering is studied in				(CO5, K3)	
	(a)	UV-visible	(b)	IR		
	(c)	Raman	(d)	EPR		
				Г		
			2		R1805	

Part B $(5 \times 5 = 25)$

Answer **all** the following questions not more than 500 words each.

11. (a) Write Woodward-fisher rule with example.

(CO1, K2)

Or

(b) Explain the principle of resonance Raman spectra. (CO1, K2)

12. (a) What is chemical shift? How it is affected by various factors? (CO2, K2)

Or

- (b) Explain NOE with example. (CO2, K2)
- 13. (a) Differentiable Zeeman and zero field splitting. (CO3, K4)

Or

- (b) Explain the principle and EPR spectroscopy. (CO3, K4)
- 14. (a) Write McLafferty rearrangement with example. (CO4, K4)

Or

- (b) State about hyperfine incretion in EPR. (CO4, K4)
- 15. (a) Comment on the spectral line brodening. (CO5, K3)

Or

(b) Draw and explain the instrumentation of double beam UV-visible spectrometer. (CO5, K3)

R1805

Part C $(5 \times 8 = 40)$

Answer **all** the following questions not more than 1000 word each.

16. (a) Discuss the principle of IR spectroscopy. (CO1, K2)

Or

- (b) Explain the mechanism of SERS. (CO1, K2)
- 17. (a) How NMR spectroscopy useful in structural elucidation of organic compounds. (CO2, K2)

Or

(b) Explain off-resonance and double resonance.

(CO2, K2)

18. (a) Discuss COSY and NOESY spectra. (CO3, K4)

Or

(b) Write a detailed note on EPR of cu complex.

(CO3, K4)

19. (a) Explain the principle and application of MALDI-MS. (CO4, K4)

Or

- (b) Write a note on mossbare of $K_4[Fe(CN)_6]$ and $K_3[Fe(CN)_6]$. (CO4, K4)
- 20. (a) Draw the important components of a optical spectrometer. (CO5, K3)

Or

(b) Write a note on sample preparation involved in IR, NMR and UV-visible spectroscopy. (CO5, K3)

R1805